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Abstract

Compositionality—the construction of complex meaning from simpler constituents—is a
fundamental notion in the study of linguistic meaning. Two prominent approaches to modelling
meaning are Formal Semantics and Distributional Semantics. While in Formal Semantics,
compositionality takes center stage, there is no straightforward means to represent graded
probabilistic phenomena. Distributional Semantics, by contrast, is inherently probabilistic, but
does not adequately capture truth-conditional constructions such as quantification. A novel
framework for meaning representation, Distributional Formal Semantics (DFS), combines the
strengths of both approaches, by offering graded probabilistic meaning representations in the
form of vectors that are truth-conditionally grounded. This allows DFS to model logical and
probabilistic phenomena, and to remain compositional on the propositional level. While it has
been shown that meaning representations in DFS can be incrementally constructed using an
RNN, we here aim to provide an explicit, set-theoretic mechanism of compositional meaning
construction that derives propositional meaning representations from their subpropositional
constituents. By arriving at such a mechanism we scale up the coverage of DFS from the
confined, small-scale training data of an RNN to the full compositional complexity of natural
language.
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Chapter 1

Introduction

Distributional and formal semantics are two strains of modeling linguistic meaning with different
strengths and weaknesses. Formal semantic models (inspired by early 19th-century philosophical
work such as Frege, 1892 and Russell, 1940) rely on abstractly defined truth-conditional symbolic
systems. This allows them to have great expressive power over sentence meaning and its
construction (compositionality). However, meaning in formal semantic models is discrete and
it typically struggles to accurately account for graded expectation-based phenomena in human
meaning construction, such as probabilistic inference. Distributional (or vector-based) semantics
(inspired by the distributional hypothesis Firth, 1957) on the other hand has proven immensely
successful in modeling graded semantic memory in the lexical domain, but it is not compositional
and struggles to model logical phenomena such as quantification (Baroni et al., 2012).

From a cognitive perspective, the qualities of both systems are desirable for modeling human
meaning construction and representation. The human computational and representational
principles seem to allow for the incremental, compositional construction of sentence meaning
and at the same time retain the abilities of expectation-based probabilistic inference. Based
on the work by Frank et al. (2003), Venhuizen et al. (2021) propose a unification of the two
strains of thought: Distributional Formal Semantics (DFS). Meaning representations in DFS are
vectors of truth values of propositions observed from different formal models representing the
state of the world at a given moment. A collection of these vector representations (a matrix)
then comprises the meaning space. Venhuizen et al. (2021) show that 1. DFS is compositional on
the propositional level, 2. can model probabilistic phenomena and 3. DFS representations can
be incrementally learned and constructed using a Recurrent Neural Network (RNN). Moreover,
DFS representations have been shown to directly give rise to information theoretical principles
which have been shown to be related to correlates of human processing difficulty (Venhuizen,
Crocker et al., 2019). In order to maximally capitalize on the explanatory power of DFS and to
expand its scope to a wider range of linguistic phenomena, full compositionality is desirable for
DFS. It would then be possible to see how the notions of surprisal and probabilistic inference
as defined in the propositionally instantiated DFS space trickle down into the subpropositional
level. This requires the explicit definition of meaning representations on the subpropositional
level in DFS (words), as well as a compositional mechanism to combine these representation
into more complex (sub)propositional units. The aim of this thesis is exactly to define such a
mechanism in the context of DFS. In the following sections, first the notion of compositionality
and is implications are discussed. Then, formal and distributional semantics, their attempts at
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CHAPTER 1. INTRODUCTION 2

compositionality and their shortcomings are further explicated. In section 1.2, a more complete
introduction to DFS is provided. Lastly, the aim and trajectory of the present thesis is given as
well as an introduction to the concept that is key to achieving full compostionality in DFS: the
definition of subpropositional units as sets of meaning vectors.

More generally, chapter 1 provides the necessary background for DFS and distributional
semantics. Chapter 2 introduces the formal machinery for deriving sentence meaning in DFS.
Chapter 3 demonstrates the functionality of the proposed compositional mechanism using a
python implementation (https://github.com/LuukSuurmeijer/dfs semantics python). Chapter 4
reflects on potential issues and further avenues for research on compositionality in DFS.

1.1 Compositionality in semantics

Compositionality, mainly attributed to Frege (1892) and sometimes referred to as Frege’s Principle,
is the idea that the meaning of an utterance in a language is a function of the meaning of its
constituents and the way in which they are combined. More specifically it dictates that the
meaning of a compositional language depends on i) the meaning representation of non-divisible
units of the language, ii) the order in which these units are combined (syntax) and iii) the
operation by which these units are combined. This allows a languages’ interpretable units to be
interpreted bottom-up. In order to make the definition of compositionality slightly more tangible,
ex. 1 (taken from Potts, 2018) is a visualisation of a compositional derivation of sentence meaning.
The terminal nodes of this structure are primitive meaning units. These are composed into the
complex meaning units at the non-terminal nodes via the function fa(). This operation is key to
deriving full meaningful utterance and is referred to as function application. This example
illustrates that theories that strive to be compatible with compositionality must provide explicit
answers to the aforementioned points i) and iii), which in ex. 1 are the exact denotations of
{A, B, C, D, E} and the instantiation of the operation over those denotations (fa()).

(1) JAK = fa(JBK, JCK)

JCK = fa(JDK, JEK)

JEKJDK

JBK

In the context of natural language, the concept of compositionality is nearly uncontroversial
(Partee, 2004). It is, given the aim of this thesis, nevertheless useful to discuss the necessity of
compositionality for the study of meaning in natural language. First of all, natural language is
unbounded and speakers continuously utter and interpret phrases that are totally novel. The
assumption of compositionality in any framework of meaning immediately allows accounts for this
unboundedness as there is now an (underspecified) mechanism that allows the construction of
non-primitive units of meaning of arbitrary complexity. Secondly, natural language is systematic,
meaning that the meanings of expressions of different make-up still are predictably related to
each other. The sentence ”the musician grabbed his instrument” has a related meaning to the
sentence ”the musician played the tune” and the sentence ”the surgeon grabbed his instrument”
precisely because of the overlap in meaning of the primitives and structural make-up. In other
words, under compositionality the meaning of a sentence is the sum of the meaning of its parts.

https://github.com/LuukSuurmeijer/dfs_semantics_python
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It is not exactly clear, however, whether compositionality is a factual claim about language
or merely a methodological guideline in the formalization of natural language meaning (Herbelot,
2020). What makes this issue even more complicated is that there is no singular formalization of
compositionality for natural language. From the cognitive perspective of language perception,
compositionality in the broad sense is simply a prerequisite for meaning construction as the
hard constraint on language production and perception is its incrementality. This means that
the starting point of how one constructs a representation of an utterance meaning is necessarily
a singular primitive of the language to which more and more input is added one by one
(continuously). The human language system is hence tasked with incorporating this input into
some sort of meaning representation. This incorporation necessarily has a bottom-up component
and can be assumed to be, independent of the exact instantiation, composition.

Additionally, we must ask ourselves whether it is really true that the meaning of natural
language expressions truly only depends on the meaning of its primitives and the structure of
the utterance. It is namely the case compositionality does not immediately have an answer for
context-dependent phenomena often categorized as pragmatics, such as intensional predicacy,
speaker-orientedness, and reference resolution (Kamp & Partee, 2002). For example, the meaning
of a sentence like ”John believes that it’s raining” seemingly does not depend exclusively on
the composition of the meanings of the individual words, but also on a certain belief state that
pertains to John (intensionality). This belief state is crucially not encoded in the lexical items
(top-down information) and thus compositionality under its strict definition does not allow for
this information to contribute to the construction of sentence meaning. Another example is
discourse context that is required to interpret the meaning of a sentence. In order to interpret
coreference, speakers must have interpreted antecedents in the preceding discourse contexts
before being able to interpret their referents in the present input.

Although these phenomena seem to contradict the definition of compositionality, they are not
necessarily problematic for many theories of meaning. As mentioned before, compositionality
is a theory-dependent concept. The exact instantiation of a compositional mechanism is not
uniformly defined and crucially depends on the nature of the representations of the respective
model. Hence whether or not a theory of meaning can incorporate top-down information in
its derivation of sentence meaning depends on how its primitive representations are defined.
Theories that employ such richer semantic representations are often classified under the umbrella
term Dynamic Semantics and generalize from traditional formal semantics (section 1.1). An
example of a semantic theory that incorporates such context-dependent information is Discourse
Representation Theory (DRT) (Kamp & Reyle, 1993), which, as the name implies, incorporates
discourse information into its representations. Traditionally, DRT is not explicitely compositional
and hence often dubbed a ”representational” theory of semantics. However, any theory can be
made compositional (and inherit its usefulness and necessity) by defining explicit operations over
its representations. Such is the case for DRT with the advent of λ-DRT (Muskens, 1996).

The history of Discourse Representation Theory illustrates that contemporary theories of
semantics can have powerful representations that elucidate on context-dependent phenomena,
and also may have well-defined compositional rules to abide by compositionality, but that these
two considerations are not strictly congruent with each other. The theoretical implication of
compositionality is a robust point of departure for theories of semantics, as its requirements
force the semanticist to think explicitely about the nature of subpropositional meaning and their
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composition. On the other hand, there are meaning-related pragmatic phenomena that seem to
defy compositionality. However, richer semantic representations (such as the ones employed in
DRT) may provide greater explanatory power even for those phenomena that are traditionally
seen as belonging to the field of pragmatics. Given these considerations, in the following section
a working definition of compositionality is proposed that will be the guide for the rest of this
thesis based on Szabó (2012).

A working definition of compositionality in this thesis

Szabó (2012) argues that the traditional formulation of compositionality is too strict with respect
to the arguments for it (i.e. the argument from productivity), and it is not feasible to respect strict
compositionality as an objective truth about language given the weaknesses in these arguments.
He namely shows that the strict definition is too underspecified to reasonably be supported
by its supposed arguments (such as the argument from productivity and systematicity) and
to sufficiently deflect counterexamples (such as scope ambiguities and the context-dependence
phenomena mentioned earlier). Specifically in the phrase “the meaning of an utterance in a
language is determined by the meaning of its constituent parts and the way in which they are
combined” Szabó (2012) wonders what “determined by”, “meaning of its constituent parts”, and
“they” could refer to. Szabó (2012) continues to argue that in order to allow semantic theories to
scale up their representational currency to include such phenomena, a more specific and weaker
form of compositionality must be specified beforehand. However this must come at the expense of
working with a weaker statement of the compositionality principle that is costly to assume to be
a general fact of language. In order to allow for rich meaning representation that may explain (a
subset of) context-dependence phenomena as well as structural phenomena, this thesis takes one
of the suggestions for a weaker definition proposed by Szabó (2012) and defines compositionality
as follows.

(2) There is a function fa() to the meaning of complex utterances from the individual meaning
of its constituents and the way in which those meanings are combined.

This thesis explores the notion of compositionality in a novel theory of semantics that seeks
to combine the truth-conditional compositional framework of formal semantics (section 1.1) with
the representational and empirical power of distributional semantics (section 1.1): Distributional
Formal Semantics (Venhuizen et al., 2021). In what follows, this thesis discusses both of
these theories. The power of formal semantics, stemming from its definitional rigor and strict
compliance with compositionality, is introduced first. Secondly, the power of distributional
semantics, stemming from its rich data-driven representations is discussed. We then arrive at
Distributional Formal Semantics, the framework that seeks to combine these strengths, and
introduce its representations and explanatory power. Lastly, the aim of the present thesis is
introduced. Namely to introduce a formal semantic notion of subpropositional meaning and
composition to DFS.

Compositionality in formal semantics

Modern day formal semantics is built on concepts introduced by philosophy of language throughout
history (for example Frege, 1892 and Plato). One of the well-known formalizations of natural
language semantics in a mathematical predictive model, by utilizing properties from logic and
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model theory, is Montagovian semantics (Montague, 1973). Montagovian formal semantics tried
to explicitly address the mechanisms required for reconstructing the meaning of a sentence given
a syntactic structure. Specifically, natural language utterances are formalized as first-order logic
sentences. The interpretation of these first-order logical forms comes down to asserting their
truth with respect to a certain model M and an interpretation function V. The model represents
a certain state of affairs and the interpretation function relates the linguistic units (individuals,
predicates) to the entities and relations represented by the model. I give an example of such a
model and interpretation function in fig. 1.1 and eq. (1.1).

e1

e2

e3

e4

A
B

Figure 1.1: An example visualization of a model in formal semantics

VM(Chet) = e1 VM(Miles) = e2 (1.1)

VM(Sarah) = e3 VM(Ella) = e4

VM(sing) = {e1, e3, e4} VM(playtrumpet) = {e1, e2}

Using a set of symbolic rules, formalized natural language utterances can be interpreted with
respect to a model and interpretation function. These symbolic rules are explicated in work like
Montague, 1973. For example, a one-place-predicate JR(t1)KM,g is true iff Jt1KM,g ∈ VM(R). A
conjunction between two utterances Jφ∧ψKM,g is true iff JφKM,g = 1 and JψKM,g = 1. In this way,
we can see that a sentence like playtrumpet(Chet)∧sing(Chet) is true given the model in fig. 1.1,
but the sentence playtrumpet(Miles) ∧ sing(Miles) is false. The other logical connectives as
well as the first-order quantifiers are covered in this fashion using symbolic interpretation rules.
This allows formal semantics to interpret a broad variety of linguistic phenomena and explicitly
denote their semantics.

With the interpretation and assertion of complete logical sentences in formal semantics in
place, we can now take a look at the exact compositional mechanism employed to construct
these complete logical units. Formal semantics employs typed λ-calculus to achieve this. Firstly,
we must observe that first-order logic is not expressive enough to capture the full space of
natural language utterances. Think for example of second-order predicacy (predicates that take
predicates as arguments, ”to be ignorant is to be blessed” for example). The aim of type-theory
is to assign the elements of our semantic model to a certain amount of mathematical objects
thereby restricting the combinatorial space. Concretely, all lexical items are assigned either e
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(entities), t (truth-values, sentences) or a complex type consisting of those two elements. Complex
types are taken to represent functions, such that an expression of type et denotes a function from
entities to truth values. Type theory allows for a systematic, simple but expressive formalism for
capturing a whole range of new phenomena (see Winter (2016) for a helpful introduction). More
importantly however, the functional approach to complex expressions gives formal semantics an
explicit index of compositionality. Individual lexical items may now denote functions of arbitrary
order, and the types of complex meaning units may be inferenced from their constituent parts. A
helpful mathematical tool for representing these possibly very complex functions is λ-calculus. A
full description of λ-calculus is beyond the scope of the present thesis, mainly because λ-calculus
inherently is largely a notational device for representing functions (the main type of denotation
in formal semantics). Typed λ-calculus essentially allows lexical items and partial functions and
their types to be explicitly represented and have an explicit operation for combining linguistic
expressions with each other (β − reduction). For the sake of completeness, an example of the
derivation of a full proposition from typed λ-expressions is given in fig. 1.2 (slightly simplified).
The expression at the root of the tree in fig. 1.2 is a first-order logic sentence which can be
evaluated with respect to a model like fig. 1.1 according to the interpretation rules discussed
before (which would result in a truth value of 1 in this case).

play(trumpet, Chet) ∧ sing(Chet)
fa(JChetK, Jplays trumpet and singsK) = JChet plays trumpet and singsK

λxe.play(trumpet)(x) ∧ sing(x)
fa(Jplays trumpetK, Jand singsK) = Jplays trumpet and singsK

λPetλxe.P ∧ sing(x)
fa(JandK, JsingK) = Jand singsK

λxe. sing(x)
JsingsK

λQetλPet.P∧Q
JandK

λxe.play(trumpet)(x)
fa(JplaysK, JtrumpetK) = Jplays trumpetK

trumpeteλyeλxe.play(y)(x)
JplaysK

Chete

Figure 1.2: An example derivation of a first order logic sentence in formal semantics.

What allows and facilitates compositionality in formal semantics is typed λ-calculus, but
the final interpretation of linguistic items is still fully dependent on the formalization of its
lexical representations which for formal semantics is first-order logic and model theory. The
coverage of the semantic model and its answer to context-dependent phenomena thus still is
largely restricted by the nature of its representations. The nature of the representations in
first order logic and model theory is binary and deterministic, and hence does not account for
graded expectation-based phenomena such as probabilistic inference, fuzzy adverbs (few, many),
and tendencies without explicit modification of the representations. Capturing this type of
phenomena requires the explicit modification of the mathematical basis of the representations,
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which has been attempted in the form of probabilistic model theory (Emerson & Copestake,
2017) and stochastic λ-calculus (Goodman & Lassiter, 2015) among others.

Compositionality in Distributional Semantics

Distributional semantics, sometimes referred to as Vector Space Modelling, is an empirically
driven approach to modelling meaning, in which lexical meanings are encoded as vectors. Turney
and Pantel (2010) review the literature and technical basis of Vector Space Models. The
vector-representations are extracted from corpora based on co-occurrence counts of the corpus’
vocabulary items. This results in a description of lexical items that consists solely of information
about its distributional use in language. The core assumption of DS is the distributional
hypothesis famously attributed to Firth, 1957: “one might know the meaning of a word by the
company it keeps”. In other words, word meanings that occur in similar contexts tend to have
similar meanings. Distributional semantics assumes that the meaning of lexical items, lexical
categories may be inferred from the contexts in which the item may appear in and its similarity
to other lexical items (see Turney and Pantel, 2010).

Distributional semantics has a number of properties that are appealing for modelling meaning.
First of all it is empirically driven, meaning that lexical meanings can be extracted and learned
from data automatically. This allows distributional semantics to make large-scale predictions
and set-up ambitious experiments regarding the exact nature of its representations. Second of
all, because words are represented as vectors, distributional semantics essentially embeds its
lexical items into an n-dimensional space. The mathematical nature of these representations
allows the use of linear algebraic properties that yield very precise metrics of concepts like
semantic similarity (Turney & Pantel, 2010). Baroni et al. (2014) mention that distributional
vectors provide a very accurate analogue to human similarity judgements, and that there is an
increasing body of evidence that neural activation patterns in language comprehension are akin
to distributional representations such as the ones employed in DS (Spivey, 2006).

These properties have made distributional semantics into more than just a model that is
useful for the study of natural language meaning. Lexical items represented as distributional
word embeddings are now commonplace in other NLP tasks. Using word embeddings as the
input to Neural Network architectures for NLP tasks is empirically shown to boost performance
by quite a large margin, indicating that distributional representations of lexical items quite
accurately capture the necessary linguistic information required for tasks like POS-tagging and
question answering (Turney and Pantel, 2010, Bakarov, 2018, Baroni et al., 2014).

On the flip side of the immense success of DS in the lexical domain, it is less clear what
exactly the DS framework predicts in functional linguistic items (prepositions, grammatical
morphemes) and structural phenomena. Traditional distributional semantics has no explicit
operation by which simplex vector representations can be combined into larger complex meaning
units. An often proposed function application mechanism consists of certain vector mixture
operations (Baroni et al., 2014). The most obvious ways in which to compose vectors is by adding
or multiplying them element-wise. Under this view, the composition of the vectors representing
the words jazz and musician would be as in ex. 3 under the additive model and as ex. 4 under
the multiplicative model. The appeal of the multiplicative model is that it intersects features
of the respective vectors with each other. If both jazz and musician have a high value for the
ith entry, the ith entry of jazz � musician will have a much higher score for the ith entry
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(compared to the additive model). Additionally, if one of the features in either component is 0,
the resulting entry is by definition also zero irrespective of the other component.

(3) fa(jazz, musician) = jazz + musician

(4) fa(jazz, musician) = jazz � musician

However, there are number of issues with this compositional mechanism.1 Firstly, the
vector mixture operations are mathematically symmetric. This means that jazz � musician =
musician � jazz. This is contrary to our intuitions about language, where in complex noun
phrases the meaning of the noun is modified by the meaning of the adjective and not vice
versa. Secondly, words with grammatical function are not easily captured by distributional
representations. The features of the vector for the word musician, because it is a content word,
are tied to specific contexts and topics. To the contrary, consider the vector representing a
quantifier like some or all. Since the function of these words is grammatical, their distribution
will not be context-specific and may be associated with any noun thus resulting in a highly
generic and non-informative representation. In Baroni et al. (2012), the question of whether DS
could capture semantic phenomena like quantification and entailment was investigated using
a classification approach. Results indicated that vector representations are able to encapture
some lexical entailment relations (for example: big dog |= dog), but struggled to do so in the case
of less explicit lexical entailments involving quantification (many dogs |= some dogs). Thirdly,
distributional representations are not grounded whereas formal semantic representations are
grounded in a rudimentary way. It is not obvious that the meaning of a word with an inherent and
somewhat fixed spatio-temporal extension (like the english preposition ”on”) can be accurately
represented by its distribution in natural language. Distributional representations of objects
trained on linguistic form alone cannot capture sensory-motor information about the shape, color,
smell etc. of said object beyond some of the sensory terms that are encoded in the language’s
lexicon.2. Lastly, the possibility of recursion in nautral language is problematic for these vector
mixture models. Linguistic embeddings of higher depth will tend to either explode the numerical
values of each feature, or almost nullify them if there happen to be features represented by
floating point numbers < 1 (under the multiplicative model).

Formal semantics sidesteps these problems because of its logical and definitional rigor.
Representations are grounded, because their truth is asserted with respect to some model. The
meaning of words like on is allowed to depend on a high level description of the physical state-
of-affairs of the world, which might be different at each point in time or for each individual.
Additionally, Formal Semantics treats words like the quantifier some as a separate type from
content words. Quantifiers are then functions operating on sets of content words. Therefore
there is no need to estimate the distribution of the words like some, because their function is
defined a priori. The logical question to ask is how to reconcile the representational power of
Distributional Semantics with the compositional and logical strength of Formal Semantics. The
following section discusses such a reconciliation in more detail, namely Distributional Formal
Semantics.

1See Baroni et al. (2014) for an overview of different accounts of compositionality for distributional semantics.
2See also Bender and Koller (2020) for a discussion of whether computational methods trained on linguistic

form are able to generalize to non-linguistic meaning.
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1.2 Distributional Formal Semantics

The strengths and weaknesses of formal semantics and distributional semantics seem almost
complementary. Formal semantic representation and composition is logically sound and grounded,
but does not explicitly account for the gradedness of language. Distributional semantics does
account for this gradedness and is neurally plausible, but seems to lack the logical mechanisms for
dealing with structural and grammatical phenomena. Distributional Formal Semantics combines
the strengths of both models while providing an answer to their weaknesses. DFS employs
distributional yet truth conditional representations of propositions, which are embedded in a
meaning space. I now illustrate the representations defined and employed in DFS in more detail.

A given meaning space S in DFS is defined in terms of only a handful of ingredients. A
set of models M (where every model Mi ∈M = 〈UMi , VMi〉) a set of propositions P and some
assignment of truth values to each pi ∈ P for every Mi ∈M. The meaning space S can then be
represented as a matrix A of dimensionality |M| × |P| where each entry Aij is the truth value
thatMi assigns to Pj . I give an example visualisation of a DFS meaning space in fig. 1.3. A DFS
meaning space can have a number of theoretical interpretations depending on one’s goal. It can
be seen as a set of possible worlds (in the tradition of possible-world semantics), a representation
of model-theoretical semantics through time, or the belief state (or world-knowledge system) of
an individual.



p1 p2 p3 · · · pn

M1 1 0 0 · · · 0
M2 1 1 1 · · · 1
M3 0 1 1 · · · 1
· · · · · · · · · · · · · · · ·
Mm 0 1 0 · 0


Figure 1.3: An example meaning space in DFS in matrix form.

It follows from this definition that the representation of unique models and propositions
is given by the row and column vectors of the meaning space respectively. This allows DFS
to inherit powerful mathematical properties from linear algebra and, with some additional
definitions, probability theory. More importantly, these vector representations are key in defining
propositional compositionality in DFS. The formal definition of a propositional meaning vector
as defined in Venhuizen et al. (2021) is given in eq. (1.2).

JpKS = ~v(p) st: for all i ∈ |MP | ~vi(p) = 1 iff Mi |= p (1.2)

Meaning spaces inherently carry the structure of the world they represent in terms of the
co-occurence of propositions in certain models. Say, for example, one would like to model a world
in which P1 = possess(MasterSword, Link) and P2 = worthy(Link), then anyone with knowledge
of the Zelda franchise will recognize that Link can only possess the Master Sword if Link is
worthy. The meaning space associated with this knowledge must reflect this condition. Formally
speaking, it must hold that P1 |= P2 in all models ∈MP in the meaning space. Venhuizen et al.
(2021) propose a sampling-algorithm that can generate a consistent DFS meaning space from a
high-level specification of a world and the desired number of models.3 This high-level specification

3For a full description and discussion of the sampling algorithm I refer the reader to Venhuizen et al. (2021).
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contains probabilistic and hard constraints (like possess(MasterSword, Link) |= worthy(Link)
in the previous example) that the output space must preserve in terms of co-occurrences of
propositions. Hence the meaning of a proposition is defined as its truth-conditional co-occurence
with other propositions across models in the meaning space (akin to distributional representation),
but the truth of the proposition in each model is asserted based on traditional model theory
(akin to Formal Semantics).

I have illustrated how DFS can model worlds in terms of a (thus far) finite set of propositions
and models, but DFS can represent the meaning of propositions of arbitrary complexity as
well. Venhuizen et al. (2021) ascertain this by defining the notions of negation and conjunction
over meaning vectors, thus providing functional completeness and the ability to express any
proposition that is some composition of the propositions in P. Negation of a meaning vector is
defined as the complement of that vector. Conjunction between two meaning vectors is defined
as the element-wise conjunction of two vectors. The definitions are given in eq. (1.3) and eq. (1.4)
respectively.4 Meaning spaces in DFS can thus represent complex world knowledge structures,
dependencies and constraints in the form of meaning vectors.

J¬pKS = ~v(¬p) st: for all i ∈ |MP | ~vi(¬p) = 1 iff Mi 6|= p (1.3)

Jp ∧ qKS = ~v(p ∧ q) st: for all i ∈ |MP | ~vi(p ∧ q) = 1 iff Mi |= p and Mi |= q (1.4)

Venhuizen et al. (2021) furthermore show that probabilistic inference can also be formalized
from meaning vectors and meaning spaces. The probability of a proposition p ∈ P can be
formalized as the number of models that entail p over the total number of models in the meaning
space (eq. (1.5)).

P (p) = |{Mi ∈MP | Mi |= p}|
|MP |

(1.5)

The joint probability of two propositions p, q ∈ P can be calculated by calculating the prob-
ability of their conjunction as in eq. (1.6) (and similarly for any arbitrarily complex proposition).
In this case meaning the fraction of models that entail both p and q.

P (p ∧ q) = |{Mi ∈M |Mi |= p and Mi |= q}|
|MP |

(1.6)

From these definitions we can infer that the conditional probability of p given q is computed
by the probability of their conjunction over the probability of q.

P (p|q) = P (p ∧ q)
P (q) (1.7)

Meaning spaces are structured in terms of probabilistic constraints and entailment constraints.
For example, playing the piano means the player is probably inside (where piano’s typically reside,
but not always), but it also means the player is definitely producing a sound. Playing the piano
has a probabilistic relationship to being inside and an entailing relationship to producing a sound.
Both types of co-occurence can be modelled with probabilities, as the entailing dependency
(p |= q) will have a conditional probability of 1 (and a negative entailing dependency a probability

4Note that p and q are taken to represent some Pi and Pj ∈ P. To adhere to the traditional conventions of
propositional logic these notations are henceforth considered equivalent.
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of 0). Venhuizen et al. (2021) formalize both types of dependencies in a single metric dubbed
the inference score eq. (1.8). The inference score between p and q yields a number in the range
[−1, 1] that indexes to what extent p can be inferred from q, where inf(p, q) = −1 means q |= ¬p
and inf(p, q) = 1 means q |= p.

inf(p, q) =


P (p|q)−P (p)

1−P (p) P (p|q) > P (p)
P (p|q)−P (p)

P (p) otherwise
(1.8)

Venhuizen et al. (2021) show that these building blocks allow DFS to model a wide range of
semantic phenomena, such as presupposition, probabilistic inference, anaphoricity and quantific-
ation.

1.3 Subpropositional meaning in DFS

So far, only probabilism and compositionality on the propositional level have been introduced in
DFS. In order to analyze and make predictions about the meaning of individual words, similar to
how Formal Semantics do so in fig. 1.2 for example, an instantiation of subpropositional meaning
with respect to DFS meaning spaces is desirable.

Meaning vectors of propositions in a DFS meaning space consist only of the binary integers
0 and 1, reflecting their truth value in a particular model. However the meaning space itself
is by definition continuous, implying that any real valued vector of size |M| represents some
sort of meaning in the space. Because these real valued vectors lie in between the propositional
meaning vectors, we can take these intermediately located vectors as representing meaning on
the subpropositional level.

Venhuizen et al. (2021) show that these meanings can be indexed using a Recurrent Neural
Network (Elman, 1990). A multilayered RNN is trained to map between localist word repres-
entations of the lexical items in the propositions of the space and DFS meaning vectors from a
sampled meaning space of 10000 models (reduced to 150 for modelling purposes). A schematic
of the network architecture is given in fig. 1.4. The network is fed one of these localist word
representations at each time step. The RNN outputs an estimate of the intended word meaning
after every word. The estimate after the model has seen only one word of the intended utterance
will not directly map onto a complete meaning vector, as the model cannot reasonably infer
whether for instance the utterance “John orders beer” or the utterance “John orders cola” is
meant after only processing the word “John” (bar the probabilistic constraints on John’s drink
preferences contained in the meaning space). This means that as the model is exposed to more
input contained in the utterance, the estimate for the intended meaning will incrementally move
closer to the final (binary) utterance meaning. Figure 1.5 gives a visual representation of this
trajectory. Formally, a sequence of words w1 . . . wn define a trajectory through the meaning
space ~v1 . . . ~vn where each ~vi represents a subpropositional meaning of the words w1 up to wi.

The non-final estimations of utterance meaning by the model yield real valued vectors in
the meaning space. The estimate for a given word lies somewhat in the middle of its possible
continuation. This is because the network estimate for a particular word in isolation are
partial towards propositions involving this word, but relatively impartial between these relevant
propositions. However, the estimate is not completely impartial as the network output is sensitive
to the frequency of certain constructions the network has seen at training time. Venhuizen et al.
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Figure 1.4: Schematic of the neural network architecture taken from Venhuizen et al. (2021).
Full arrows imply matrix of learnable parameters. The dotted arrow indicates a copy operation.

(2018) show that the structure of DFS space and frequency modulation in the RNN training
data can effectively model world knowledge versus linguistic experience. Ultimately, these neural
network estimates are taken to be the subpropositional meaning of the input utterance w up to
time t in a particular DFS space.

Venhuizen et al. (2021) furthermore show that the distance between each network estimate is
proportional to the point-wise entropy or surprisal of the next incoming word given the history
of the utterance so far. Here (conditional) surprisal (eq. (1.9)) of a word/utterance is defined as
the negative logarithm of its probability in the distribution of possible words/utterances (given
the context). The less expected a word is, the higher its surprisal (or information content) is. In
DFS surprisal can be interpreted as the expectedness of a transition from one point in space to
another. Cognitively, information theoretical surprisal has proven to be an excellent index of
processing difficulty for empirical data like reading times (Brouwer et al., 2021).

suprisal(x) = −logP (x|h) (1.9)

In conclusion, the probabilistic, compositional and incremental nature of the DFS components
(including the neural network generating the subpropositional meaning vectors) are able to
capture import aspects of natural language meaning. For example, Venhuizen et al. (2021)
show that notions of presupposition, quantification, and anaphoricity emerge from the model
behavior. However, there are practical drawbacks to employing a neural network to find the
subpropositional representations for further analysis. In the following section these drawbacks
are explicated and the main aim of this thesis is introduced, namely to introduce a set-theoretic
and transparent notion of subpropositional meaning and composition.
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Figure 1.5: Trajectory of RNN outputs through the dimensionality-reduced meaning space taken
from Venhuizen et al. (2021). The coloured nodes are the network outputs after seeing a particular
word. The coloured lines (and numbers) indicate the distance between respective points in the
meaning space.

1.4 Towards explicit compositionality in DFS

In principle, there are no huge theoretical reservations for using neural networks as compositional
mechanisms. A neural network adheres largely to the definition of compositionality in ex. 2.
Given some sort of distributed vector representation of lexical items, the composition of multiple
items can be given by their multiplication with a matrix of learned parameters (Potts, 2018).
Because this weight matrix is estimated holistically on training data (i.e. every input previously
seen and used during training has an effect on the weight matrix which percolates to the output
estimate of the current input), one might say that this violates the spirit of compositionality.
However, the definition in ex. 2 poses no intrinsic restriction on the richness of the mechanism
nor the representation. In fact, we have already seen some context-dependent “counterexamples”
that seem to require such holistically informed mechanisms to be captured.

Furthermore, the benefits of a deep learning approach are considerable for the field of
semantics on the whole. The performance of a neural network is directly quantifiable on preset
evaluation criteria, specifically its ability to generalize to unseen data (something that should
be of particular interest to researchers interested in meaning construction). Furthermore, deep
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learning approaches to semantic modelling open the door to larger-scale empiricism in the field of
semantics (see Potts (2018) for additional information of the role of neural networks in semantics).

However, as already mentioned, using an RNN for the task of composing complex meaning
vectors from simplex parts has a particular drawback. To train a neural model of sufficient
accuracy on a semantic task, a certain degree of complexity is required. The RNN employed in
Venhuizen et al. (2021) alone, which is a comparatively simple model, already has roughly 36.000
learnable parameters (the cardinality of the weight matrices summed). Complexity may also be
increased by adding non-linearities to the model, altering the training procedure or introducing
more hyperparameters. To a certain extent this complexity is warranted, sometimes because
the mapping task of the network is not trivial and furthermore because the neural machinery
involved in meaning construction in humans is highly intricate as well. The drawback of this
complexity is that the behavior and solution of the network become increasingly hard to trace
and explain as complexity increases. For a compositional theory of semantics however, it is
exactly this trace-ability and explain-ability of the mechanism that is vital to understanding how
meaning is constructed.

This thesis aims to introduce a transparent semantically-informed mechanism and represent-
ational format for composing meanings in DFS, that ideally mimics the outputs of the RNN.
Although subpropositional word/phrase representations can be implicitly constructed by the
RNN, the approach is not unequivocally desirable. Namely because the mapping that the RNN
learns is not transparent and it is not trivial to inspect the network and reverse engineer the
mechanism that the RNN employs to produce the correct outputs (although DFS representations
are structured in a such a way that introspection becomes relatively clear). This means that it is
not always clear what information the RNN uses to construct meaning vectors and whether they
are semantically informed. Secondly, the lack of explicit subpropositional composition limits
the scope of the phenomena that can be studied using DFS. Such a system would allow DFS to
increase the scale of its predictions by a large margin. It would also make DFS more directly
comparable with existing/competing formal semantic theories. Lastly, being able to show that
the RNN mechanism of constructing meaning has an analogue formulated in more traditional
semantic vocabulary would be an important argument for solidifying the validity of using deep
learning in pushing forward the field of semantics.

The central goal of this thesis is to define and implement such a mechanism for DFS. We
already know the formalization of propositions in DFS: they are vectors of truth values (meaning
vectors). Subpropositional units can then be defined as sets of meaning vectors relevant to
a given subpropositional unit. We can then define operations, such as function application,
over these sets that will allow the incremental and compositional construction of complex DFS
representations, thus providing the full compositionality that would allow DFS to increase its
explanatory power. In essence, the thesis is aimed at re-deriving first-order-logic using operations
over sets of vectors. It is then crucial that the mechanisms and representations accurately cover
n-ary predicates, logical operators and quantification as a baseline. When this mechanism is in
place, we can then inspect how the existing propositional definitions in DFS, for example for
surprisal and probabilistic inference, percolate to the subpropositional level. Secondly, we are able
to analyse other natural language phenomena such as different adjective classes (“former” versus
“Dutch” for example). Lastly, we can compare the set-theoretic predictions to the Neural Network
estimates and meaningfully comment on the differences and symbiosis between intensional and
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deep learning approaches to modelling compositional semantic construction.



Chapter 2

Set-theoretic Compositonality

As the neural network estimates show, meanings of individual words tend to lie in between
their potential continuations. It then makes sense that every proposition in the meaning space
involving a word w plays a role in the denotation of w itself. To capture this intuition, a starting
point of formalizing subpropositional meaning in DFS is defining the denotation of a word w as
the set of propositions that pertain to w (i.e. w occurs in in a proposition in any logical capacity).
The definition of the word ‘Chet’ as in fig. 1.5 is then preferably the set of propositions pertaining
to ‘Chet’.

(5) JChetK = {has(microphone,Chet), play(trumpet, Chet), sing(Chet) . . .}

The definition is already hinted at in Venhuizen et al. (2021) and here given in eq. (2.1). The
meaning of a word w in the meaning space is a set of all propositions p in the set of atomic
propositions (A), such that w pertains to p. Pertainment here is represented as a function w

that returns true if a word occurs in a proposition (in any logical capacity).

JwKS = {~v(p) | w(w, p), for all p ∈ A} (2.1)

Taking this definition as a starting point, a number of concrete questions arise as central to
the thesis. Namely

(i) what are the logical implications of defining word-level meanings as sets of propositions?
Does this apply to all words in DFS?

(ii) what does it mean to combine sets of propositions into larger meaningful constituents? i.e.
What exactly is fa() in DFS and what does it do?

(iii) how do the fundamental principles and concepts in DFS, now defined at the propositional
level, percolate to the subpropositional level?

(iv) how can we map sets of propositions back into real-valued vectors (like the RNN outputs)?

In what follows a preliminary answer to each is formulated.

2.1 Logical implications of defining words as sets

Using the definition in eq. (2.1), we arrive at a very clear objective for a compositionality in DFS.
Since words are sets of propositions, the combinatorial mechanism is tasked with finding the correct

16
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(singleton) subset of propositions from the underlying set-representations at each compositional
step. In other words, function application over these sets now involves subsecting and combining
the correct vectors in the relevant sets in order to narrow down the possible continuations. We
can do this iteratively given some sort of syntactic structure until the composition yields a
singleton set containing a meaning vector representing the propositional meaning. An example
of the most simple case would be to derive the vector describing sing(Chet) as some operation
fa() over the set of vectors pertaining to sing and the set of vectors pertaining to Chet.

Jsing(Chet)K = fa(JsingK, JChetK) (2.2)

One of the traditional set-theoretic operations (like intersection, union and complement)
might seem intuitively like a good fit for fa(). However, operations like intersection and union
preserve set immutability, meaning that relevancy depends on the (non) overlap between two
sets (i.e. how many and which elements of set 1 and set 2 are identical). This is contrary to
the intuition behind DFS meanings, which is that propositions that are true in many of the
same models ∈M are relevant to each other (i.e. not just identical vectors, also similar vectors).
Furthermore, these operations are not directional. Section 1.1 already illustrated the desirability
of directionality in function application.

A more appropriate way to formalize function application is in terms of entailment. A vector
~v entails another vector ~r if and only if the elementwise implication from ~v to ~r yields the
tautological vector (the vector that is true in all models ∈M) (Venhuizen et al., 2021). In other
words, ~v |= ~r means that in every model where ~v = 1, ~r = 1 too. Entailment is dependent on the
co-occurrence of vectors across the meaning space and is also directional and thus seems to be a
good candidate for function application in DFS.

~v |= ~r iff ~vi → ~ri = 1 for all i ∈ |M| (2.3)

Entailment as in eq. (2.3) only operates over single vectors, but our subpropositional denota-
tions are sets of vectors. Hence the function application of a word a to a word b is defined as the
set of vectors in a that are entailed by at least one vector in b. The formalization is given in
eq. (2.4). The definition in eq. (2.4) ensures two things. Firstly, since a vector always entails itself,
if a vector is contained in both functor and argument, it is guaranteed to be in the denotation
of the reduced expression. Secondly, this definition allows the structure of the meaning space
to percolate to the propositional level compostionally. Namely, if a certain entailment relation
exists in a meaning space between, say, ‘playing trumpet’ and ‘having a trumpet’, then this
definition allows for both of these predicates to play a role in the denotation of ‘playing trumpet’
and further expressions involving someone playing trumpet. In other words, if playing a trumpet
entails having one, then play(trumpet, Chet) |= have(trumpet, Chet) as well.

fa(a,b) = JaK(JbK)|= = {~v | ∃~x. ~v |= ~x ∈ a} for all ~v ∈ b (2.4)

For example, we can derive the meaning of sings(Chet) by performing JsingsK(JchetK)|=.1

Since the vector denoting sings(Chet) is contained in both the denotation of sing and the
1Some notational clarification here is in order. The sentence “Chet plays trumpet” is formalized in predicate

logic as plays(trumpet, chet), and has the logical form plays(trumpet)(chet). The meaning of the predicate logic
notation and the logical form notation is equivalent, but the logical form emphasizes the compostional structure of
the sentence.
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denotation of Chet, this vector is ensured to be in the output set. In a meaning space with
no further propositional structure, the output of this operation would thus be {sings(Chet)}.
However, in a meaning space where there are additional constraints on propositional truth the
denotation of the final expression may include more vectors. For example, if the meaning space
is constructed with the constraint that one may only sing if and only if one has a microphone,
then the proposition have(microphone, Chet) will be entailed by sings(Chet). Thus the
meaning is as follows.

(6) Jsings(Chet)KS = {sings(Chet),have(microphone, Chet)}

However, there is a shortage of representational power in mere sets. We can illuminate on
this using an example derivation of an expression involving a two-place predicate and the thus
far provided definitions. The logical form of the sentence “Tina teases mike” is given in eq. (2.5).

(tease(mike))(tina) (2.5)

For the sake of argument, we ignore any structural propositional correspondence that has
influence the meaning of this expression that may exist in an arbitrary meaning space S. Since
the denotation of tease is defined as the set of all propositions which pertain to the word tease, it
is a set which contains both tease(mike, tina) and tease(tina, mike). The denotation of the
word mike is the set of all propositions pertaining to the entity Mike. This set thus also contains
the propositions in which mike functions as the object of tease and the proposition in which
mike is the object. As mentioned before, the operation in eq. (2.4) ensures that vectors present in
both sets percolate to the output set as identical vectors necessarily entail themselves. Similarly,
when applying tease(mike) to tina, the vectors denoting tease(mike, tina) and tease(tina,
mike) percolate to the output. Thus the result of eq. (2.5) contains both tease(mike, tina)
and tease(tina, mike)). Using the same reasoning, we can show that the output of reverse
argument ordering (tease(tina))(mike) also contains both of these propositions.

From this example we may draw the conclusion that the mechanism in its current form
cannot properly capture the order of operations in natural language semantics. From here
we may conclude that the definition in eq. (2.4) is not refined enough, or that the underlying
representations of sets are not rich enough to ensure the desired outputs. Both of these hypotheses
are explored in what follows below, in which the mechanism is enriched by traditional λ-calculus.

2.2 Lambda-calculus in DFS

The representational currency of sets of meaning vectors is not enough to capture the crucial
interaction of argument ordering with the resulting meanings. One way to enrich the repres-
entation of sub-propositional phrases is to draw upon traditional λ-calculus. This enrichment
can allow us to explicitly specify the order in which a function is to be applied to incoming
arguments. The definition given in eq. (2.1) makes intuitive sense given the described trajectory
of neural network outputs through the meaning space. However, it can be refined using lexical
denotations from typed λ-calculus. Classical type theory assigns types to logical objects, namely
entities (individuals) are of type e and sentences (truth-values) are of type t. These basic types
may be combined into more complex types, which represent functions with an input and output.
All which λ-calculus adds to type theory is notational clarity, allowing us to neatly represent
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partial and curried functions. Now, one-place predicates are functions from entities to truth
values (et, takes an entity as its argument and returns a truth-value), two-place predicates are
functions of type eet (takes an entity and returns a function form entities to truth values) and so
on. The machinery I introduce in this section will be referred to as ‘λ-DFS’.

Type t expressions in DFS can be easily defined as sets of meaning vectors. Type e expressions
can be derived from the underlying structure of a meaning space. A meaning space S is composed
of |M| formal models, which all consist of a tuple 〈U, V 〉 (a universe and interpretation function)
which defines the legal entities in that model. The combined universe of all Mi ∈M ∈ S contains
the set which describes the domain of all legal type e expressions in the space S (DSe ). The
underlying model theoretic properties of these entities are already exploited in the definition of
quantification in vanilla DFS. For example, J∃x.φ(x)K is defined as the vector disjunction over an
assignment function that replaces x with e1 . . . en ∈ DSe in φ (see Venhuizen et al. (2021) for a
formal definition of the existential quantifier in DFS).

DSe =
⋃

i∈|M|
UMi (2.6)

We can then properly define lambda functions whose internal logical currency is expressed
in a set of vectors. For example, the word ‘sing’ (et) or the word ‘play’ (eet) can be defined as
follows.

JsingKS = {~v ∈ A | ~v |= λx.sing(x)} (2.7)

JplayKS = {~v ∈ A | ~v |= λxλy.play(x)(y)} (2.8)

The denotation JsingKS , for example, may be read as ‘the set of all atomic propositions (A)
that entail sing(x) (where x is a λ-bound variable).2 These functions cannot be interpreted
with respect to a space, because there are free/λ-bound variables in their denotations. However,
the denotations can gain a correspondence between λ-expressions and interpretable sets of
meaning vectors if mediated with an existential closure operation. Existential closure was first
introduced by Heim (1982) in the context of indefinite noun phrases and discourse referents and
has since been used elsewhere in semantics, for example when dealing with Neo-Davidsonian
event semantics (Champollion, 2011). Here, it serves as a mapping between functions ranging
over sets and sets themselves.

(7) The unselective binder ∃ binds all free or λ-bound variables within its scope.

Applying existential closure to a denotation that still involves unresolved lambda terms
results in proposition with one or more quantifiers. Crucially, the meaning vector associated
this proposition given a DFS space can be derived, because DFS is functionally complete on the
propositional level. For example, applying existential closure to λx.sing(x) yields ∃x.sing(x)
which in natural language may yield “Someone sings”. Existentially binding a lambda expression
thus results in an interpretable proposition which we can use to derive the set-theoretic denotation
of words in DFS. Namely, the meaning of a lambda expression in DFS can be defined as the

2Henceforth, ~v will be shorthand for ~v ∈ A
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set of atomic vectors in the meaning space that entail (eq. (2.3)) the existential closure of the
expression.

Jλx, . . . , λn.φ(x, . . . , n)KS = ∃(λx, . . . , λn.φ(x, . . . , n)) = ∃x, . . . ,∃n.φ(x, . . . , n) (2.9)

Ordinary β-reduction can already yield interpretable function application in terms of DFS
spaces. Applying these functions to arguments of type e using β-reduction results in a reduced
expression, which can be directly interpreted in terms of the meaning space by applying existential
closure. In this fashion all vocabulary items that accept e as input can be used to reconstruct
meanings and at the same time be mapped back onto truth-value-vectors in intermediate
β-reduced constituents.

This method of existentially closing lambda terms to map back to the meaning space already
allows DFS to inherit the strengths of λ-calculus, as there is now an equivalence between typed
lambda functions and sets of meaning vectors, and by extension real-valued points in meaning
space. Figure 2.1 exemplifies how the mapping between sets of meaning vectors and lambda
terms may work in practice.

{~v | ~v |= play(trumpet)(Chet) ∧ sing(Chet)}

{~v | ~v |= play(trumpet)(x) ∧ λxe.sing(x)}

{~v | ~v |= P ∧ λPetλxe.sing(x)}

{~v | ~v |= λxe.sing(x)}{~v | ~v |= λQetλPet.P ∧Q}

{~v | ~v |= λxe.play(trumpet)(x)}

trumpete{~v | ~v |= λyeλxe.play(y)(x)}

Chete

JplayKS = {~v | ~v |= ∃y∃x.play(y)(x)}
JsingKS = {~v | ~v |= ∃x.sing(x)}
JandKS = {~v | ~v |= ∃Q∃P.P ∧Q}∗

Jand(sings)KS = {~v | ~v |= ∃P∃x.P ∧ sing(x)}
Jplay(trumpet)KS = {~v | ~v |= ∃x.play(trumpet)(x)}

Figure 2.1: An example derivation of a first order logic sentence in formal semantics with
equivalent set denotations. Additionally, an example interpretation function is provided to
illustrate the use of ∃-closure. *Note that the denotation of the operator ‘and’ here is purely
illustrative, the more precise denotation of logical operators is discussed in section 2.3.

One of the effects of the conspiracy between ∃ closure, entailment and β-reduction, the type
t set of meaning vectors is not necessarily singleton anymore. If after maximal β-reduction there
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are still vectors ∈ A that entail the vector representing the first-order-logic formula other than
itself, then these vectors will be contained in the final denotation (and will thus be a set with
a cardinality of > 1). This trait allows λ-DFS to represent DFS world knowledge, represented
in the form of propositional co-occurrence in the meaning space, to percolate to sentence-level
denotations. A simple example of this is the two propostions represented by the same vector.
These vectors then have the same truth-conditions in DFS-space and thus, for all intents and
purposes, denote exactly the same meaning. Hence compositionally constructing either of these
propositions results in a set containing both elements.

Existentially closing lambda terms in fig. 2.1 already gives rise to interesting implications
for the meaning of sub-propositional elements in DFS. For example, the meaning of the logical
operator and. Existentially closing this denotation would result in ∃P.∃Q.{~v | ~v |= P ∧Q} (the
set of vectors that entail any conjunction between two atomic propositions in the meaning space).
However, this would force us to define ∃-closure over higher order logic and also to draw upon
higher order elements of the underlying model structure. Additionally, we would like vocabulary
items that take complex types (like the logical operator ‘and’) to operate over the same logical
currency. That is, logical operators must necessarily allow for sets to be in their domain. Hence
it is a worthwhile exercise to consider denotations of logical operators in λ-DFS that address
these issues. Therefore we must devise a boolean algebra for sets of meaning vectors (similarly
to how Venhuizen et al. (2021) define a boolean algebra for single meaning vectors) in order to
interpret words of this type. This is what is presented in the following section.

2.3 Logical operators in lambda-DFS

Similarly to how Venhuizen et al. (2021) present a boolean algebra over propositional meaning
vectors, I attempt to formalize a boolean algebra over subpropositional sets of meaning vectors.
There are a number of criteria that these operations must adhere to. Namely, they must operate
over sets of meaning vectors, be an extension of the already defined logical operations over single
meaning vectors and lastly must be able to be formalized as λ-expressions.

Perhaps the most straightforward operator to define is negation. The negation of a set
of n meaning vectors {~v(p1), . . . , ~v(pn)} is the set of the vector negations of those n meaning
vectors {~v(¬p1), . . . , ~v(¬pn)} (using the definition of vector negation in eq. (1.3)). This definition
preserves some of the properties of vector negation. Namely, the set average (which returns a
vector) of a word added to the set average of its negation returns the tautological vector (see
section 2.5 for the specification of set averages). Here the negation over sets of propositions is
denoted by ¬×.

¬×a = {~v(¬p) | ~v(p) ∈ a} (2.10)

A λ-formalization of the word ‘not’ is as follows.

JnotKS = ¬×{~v ∈ A | λPλx. |= P (x)} (2.11)

Slightly less straightforward is the definition of binary logical operators over sets, like
conjunction. One issue with the denotation provided in fig. 2.1 is that, since a meaning space
contains only atomic propositions, it is possible that the atomic propositions of a meaning space
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S contain no conjunctions and therefore often returns the empty set. On a formal level, it would
be desirable to reason over all possible conjunctions in S. This is achievable with a new operator
that overrides the traditional conjunction for sets of meaning vectors. Namely, it is the operator
∧× such that a ∧× b is equal to the vector conjunction of each tuple in the Cartesian product
a× b.

Ja ∧ bKS = {~v ∈ A | ~v |= a} ∧× {~v ∈ A | ~v |= b} (2.12)

a ∧× b = {ai ∧ bj | (ai,bj) ∈ a× b} (2.13)

Since in eq. (2.12) and eq. (2.13) both a ⊆ A and b ⊆ A, the result of a× b ⊆ A×A. Hence
the definition of set conjunction satisfies the property eq. (2.14). This machinery allows us to
reason over the full range of possible conjunctions in S.

{~v ∈ A | ~v |= a} ∧× {~v ∈ A | ~v |= b} = {~v ∈ A ∧× A | ~v |= a ∧ b} (2.14)

As mentioned before, one remaining issue is that, depending on the state of the compositional
process, ∃-closure may cause us to quantify over properties (in the type-theoretic sense) rather
than just entities. Such can be seen in the denotation of and in the interpretation function given
in fig. 2.1. In order to preserve consistency of being able to infer a set of meaning vectors at
any point in the compositional process, we can back off to second order logic to help us infer
the set of meaning vectors of a denotation that contains unresolved properties. Similarly to how
we derive the overarching domain of entities in the meaning space in eq. (1.1), we can derive
the domain of properties et over the whole space S. This allows us to define quantification over
properties analogously to how Venhuizen et al. (2021) define quantification over entities, namely
by taking the conjunction or disjunction over an assignment function over properties for the
universal and existential quantifiers respectively. Equation (2.15) provides the definition of this
quantification for the existential quantifier.

J∃P.φKS = ~v(∃P.φ) st: for all i ∈ |M| ~vi(∃P.φ) = 1 iff Mi |= φg[P/Q1] ∨ . . . ∨ φg[P/Qn] (2.15)

Algorithm 1 demonstrates the procedure for generating the conjoined set of two denotations.
One loops over the Cartesian product of the sets of both denotations (using ∃-closure) and
iteratively updates the a new set with the conjunctions of the tuples in the Cartesian product.

Algorithm 1 Set conjunction
1: procedure conjoin(a, b) . The conjunction of denotation a and denotation b
2: a′ ← {~v | ~v |= ∃(a)} . Infer the set of meaning vectors for denotation a and b
3: b′ ← {~v | ~v |= ∃(b)}
4: S ← ∅ . Initialize S as the empty set
5: for i ≤ |a′| do
6: for j ≤ |b′| do
7: S ← S

⋃
{(a′i ∧ b′j)}

8: end for
9: end for

10: return S . S contains all conjunctions in the cartesian product of a′ and b′

11: end procedure
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The formalization of the natural language operator ‘and’ is given in eq. (2.16).

JandKS = λPλQλx.P (x) ∧× Q(x) (2.16)

With the denotations of negation and conjunction in place, we now have functional com-
pleteness over the propositional operators with sets in their domain. This means that all basic
logical operators can be rewritten as a combination of negation and conjunction given the above
definitions. However, the denotations of other operators simplify to eq. (2.12) with the operator
in question replacing ∧.

Operator Denotation Domain
∨× ¬×(¬×a ∧× ¬×b) A ∨× A
⊕× (a ∨× b) ∨× (a ∧× b) A⊕× A
→× ¬×a ∨× b A→× A
↔× (a→× b) ∧× (b→× a) A↔× A

Table 2.1: Subpropositional functional completeness in λ-DFS.

2.4 Quantification in λ-DFS

Intuitively, quantification could be formalized using the definition of a set of meaning vectors
(eq. (2.1)), ∃-closure and the vanilla DFS definition of quantified propositions given in Venhuizen
et al. (2021). However, this has similar issues to the ones mentioned in section 2.3 with respect
to conjunction. Namely, if a meaning space S only has atomic propositions, then it is possible
that none of them entail a quantified sentence and the denotation in λ-DFS would be the empty
set. This is especially true for universal quantification, which is quite restrictive in its truth
conditions. It is unlikely that an atomic proposition, say for example pay(john) would ever entail
a quantified proposition like ∀x.pay(x). The requirements for quantification in λ-DFS are thus
that the set representing a quantified proposition contains at least that proposition itself, and
additionally any strongly correlated meanings (in the form of entailments).

With the definitions presented in this section, it is possible to define quantification that
satisfies these properties. Additionally, it can be done so in a fashion in line with the definition
given in Venhuizen et al. (2021). The interpretation of, for example, the universal quantifier
is simply the conjunctive closure over some assignment function, except rather than ordinary
conjunction it is defined with the set conjunction as given in eq. (2.13). Equation (2.17) gives
the definition of the sentence ‘Everyone plays trumpet’.3

∀×y.Jplay(trumpet,y)KS =
∧
i≤n

{~v | ~v |= play(trumpet,y}[y/ei] (2.17)

The result of eq. (2.17) contains the all conjunctions in the Cartesian product of the sets
obtained via the assignment function. If there is no strong propositonal co-occurence imposed on
playing trumpet in this hypothetical meaning space, then the result is a singleton set containing
the vector ‘play(trumpet, chet) ∧ play(trumpet, miles) . . . ’ which is exactly the propositional

3I use ∀× to denote this type of quantification over sets rather than ∀× in order to avoid confusion between
∀× and ∀x. Additionally,

∧
is equivalent to a sum of set conjunctions (φ1 ∧× . . . ∧× φn)
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meaning of ‘∀y.play(trumpet, y)’ derived using the operations provided by Venhuizen et al.
(2021). If there are any world knowledge constraints in the meaning space, then the resulting
set is potentially larger. For example, a reasonably imaginable constraint on this hypothetical
meaning space is that playing a trumpet entails having a trumpet. If this is the case, the result of
eq. (2.17) will also contain the conjunction ‘has(trumpet, chet) ∧ has(trumpet, miles) . . . ’. Thus
the two criteria mentioned before are satisfied in this definition.

The question that remains is then how we can formalize single determiners using the traditional
λ-calculus and the operations over set introduced here. An example formalization of the determiner
‘everyone’ is given in eq. (2.18) and the interpretation is worked out in eq. (2.19).

JeveryoneKS = λP.∀×y.P(y) (2.18)

∃(λP.∀×y.P(y)) = ∃P.
∧
i≤n

{~v | ~v |= P(y)}[y/ei] (2.19)

The definition in eq. (2.19) may seem complicated at first glance, but it follows directly from
the definition of quantification in vanilla DFS and the definitions given in this section. Recall
that second-order-existential-closure can be reduced to a disjunction over an assignment function
over et predicates. Thus each element of the sum of conjunction is itself a set representing a
disjunction over all et predicates. In the hypothetical meaning space, the first element of the sum
of conjunctions is for instance {~v | ~v |= play(trumpet)(chet) ∨ . . . ∨ sing(chet)}, in which case
the assignment function replaces ‘y’ with the entity ‘chet’. Equation (2.19) shows an interesting
interaction between ∃-closure and set quantification which crucially does not clash. This is
because ∃-closure is a second-order-logic operation quantifying over meaning vectors, whilst
set quantification ranges over sets. The intuition behind this interpretation is that the word
‘everyone’ denotes the set of propositions that entail everyone doing something.

Of course the existential determiner ’someone’ can be defined equivalently with set disjunction
rather than conjunction.

JsomeoneKS = λP.∃×y.P(y) (2.20)

∃(λP.∃×y.P(y)) = ∃P.
∨
i≤n

{~v | ~v |= P(y)}[y/ei] (2.21)

2.5 Mapping sets to Rn

We now have a decent compositional mechanism for deriving sentence meaning in DFS. However,
the representational currency no longer consists of vectors as in vanilla DFS, but rather consists
of sets of such vectors. In order to preserve some of the attractive linear algebraic properties
of vanilla DFS, as well as to mimic the neural network outputs, we need some sort of mapping
between the representation of meaning as sets and as vectors.

One intuitive way to define such a mapping is to calculate the average vector (also referred to
as the centroid) given a set of logical vectors. This function then takes any set of logical vectors
and returns a vector ∈ R|MP |.
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centroid(a) =
∑|a|

i ai

|a| (2.22)

The centroid of a singleton set is then equal to said sets only element. This follows the
intuition that in λ-DFS, singleton sets represent the meaning of a proposition (that has no
strong world-knowledge co-occurrence with other propositions). In the case of a set with a larger
cardinality (> 1), each value of the centroid represents the ratio of models that are satisfied in
the set. Each element is thus essentially the fuzzy logic truth value, or the degree of truth, of
each Mi ∈M.

Another property of the centroid of a set a, is that it necessarily entails the existential closure
∃(a). This follows from the definition of entailment (eq. (2.3)) and of the definition of sets of
meaning vectors. By definition, each element of a must entail ∃(a). The condition on each
element ai is thus that where ~v(∃(a)) is equal to 0, ~v(ai) may not be equal to 1 and thus must
be equal to 0. The degree of truth for these models in the centroid hence also equals 0 and the
condition for entailment is satisfied.



Chapter 3

Compositionally Derived
DFS-Semantics

In order to lend the concepts introduced in chapter 2 some tangibility, this section contains
worked examples using a real meaning space sampled using the algorithm provided by Venhuizen
et al. (2021). In what follows the specification of the meaning space is provided, after which
I work through an example of logical operators and quantification using λ-DFS. Additionally,
I give some extra intuition on the logical consequences of negation and conjunction. Lastly, I
show that λ-DFS, much like the RNN, defines a trajectory through the meaning space with
every compositional step. The implementation of λ-DFS is built in Python (https://github.com/
LuukSuurmeijer/dfs semantics python).

3.1 World specification

In order to showcase the properties and capabilities of λ-DFS, we must take a look at an
example meaning space with a somewhat interesting knowledge structure. Venhuizen, Hendriks
et al. (2019) provide a prolog implementation of vanilla DFS (DFS-tools )which here is used to
sample a meaning space consisting of 1000 models and 26 atomic propositions. The underlying
models consist of a number of entities that either enter a bar or restaurant, eat and/or drink
something, and pay and leave the venue. The simplicity of this world gives rise to a number of
hard constraints. An entity may not enter two locations at the same time, and someone may
not order something and leave without paying. Similarly a number of intuitive probabilistic
constraints arise from the model specification, namely that someone is more likely to eat pizza
at a restaurant than at a bar and that someone is more likely to enter an establishments if
there is already another person there. Individuals are also less likely to order something else
if they have already ordered something. In all situations that are not explicitly governed by
these probabilistic constraints, the prior distribution used for sampling is uniform (a coin flip).
Furthermore each entity has their own eating and drinking preferences. The hard constraints on
the meaning space are given in table 3.1.

The meaning space in λ-DFS is instantiated with a type signature, which assigns types to
all predicates and variables that occur in any of the atomic propositions in the meaning space.
Partial types can be inferred based on the type signature. Table 3.2 gives an overview of all type
domains in the sampled world, including partial types.

26

https://github.com/LuukSuurmeijer/dfs_semantics_python
https://github.com/LuukSuurmeijer/dfs_semantics_python
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No. Constraint Description

1. ∀x∀y∀z.enter(y, x)∧z 6= y → ¬enter(z, x) Someone may not enter two places at the
same time.

2. ∀x∀y.(eat(y, x)∨drink(y, x)→ order(y, x) If someone eats or drinks something, then
they must have ordered it.

3. ∀x∀y.enter(y, x)∧pay(x)→ ∃z.order(z, x) If someone enters somewhere and pays,
then they must have ordered something

4. ∀x.askmenu(x) ∧ pay(x)→ ∃z.order(z, x) If someone has seen the menu and pays,
then they must have ordered something

5. ∀x∀y.leaves(x) ∧ order(y, x)→ pay(x) If someone leaves and orders something,
then they must have paid

Table 3.1: Hard constraints on the world in first-order-logic and natural language.

Domain Components

De john, ellen, pizza, fries, wine, beer, restaurant, bar

Det askmenu(john), askmenu(ellen), pay(john), pay(ellen), leave(john), leave(ellen),
enter(restaurant), enter(bar), order(wine), order(beer), eat(fries), eat(pizza)

Deet enter(restaurant)(john), enter(restaurant)(ellen), enter(bar)(john), enter(bar)(ellen),
order(beer)(john), order(beer)(ellen), order(wine)(john), order(wine)(ellen),
eat(fries)(john), eat(fries)(ellen), eat(pizza)(john), eat(pizza)(ellen)

Table 3.2: The type domains and their components (in logical form) of the world.

Figure 3.1 represents the structure of the meaning space in terms of inference scores (eq. (1.8)).
The inference score inf(p, q), in essence, represents the degree to which the (un)certainty about
a proposition p changes if one knows q. This figure thus visualises the type of constraints and
inferences present in this meaning space. This allows it capture logical entailments to some
extent.

In addition to the atomic propositions, fig. 3.1 also demonstrates the nature of existential
closure over word-level denotations as defined in eq. (2.9). Because the existential quantifier
distributes over disjunction, the existentially closed denotations are easy to satisfy in a given
model. This has the effect that the vectors representing these FOL formulae contain many true
values and, depending on the meaning space specification, may even be tautological. This has
the consequence that many entailment relations exist between these propositions and the other
atomic propositions in the space, many of which are represented by a perfect inference score. We
must be careful when interpreting inference scores of (nearly) tautological vectors. One might
suspect the inference scores of these vectors to often return 1 as (almost) tautological vectors
represent some sort of logical entailment, but this is not the case. For example, even though it
holds that ∃xy.order(x, y) |= order(beer, john) the inference score is 0 (assume ∃xy.order(x, y)
is tautological). This follows from the definition of the inference score. Since the conjunction
of a tautological vector q with any other vector p just returns p, the conditional probability of
P (q|p) then simplifies to P (p)

P (p) = 1. This leaves us with inf(p, q) = 1−1
1 = 0. In words, one cannot

increase their certainty about something they already know. This fact shows that the inference
score does not represent all perfect entailments with a value of 1 and that we must interpret it
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Figure 3.1: Inference score matrix of the example meaning space. The color of each index i, j
represents the inference score inf(i, j).

purely as the degree to which certainty is increased or decreased.

3.2 Working examples

Deriving sentence meaning using λ-DFS With the meaning space and definitions in place,
we can now observe the behavior of the computational mechanism in λ-DFS. Figure 3.2 presents
inference scores at every node in the compositional structure for the sentence “John entered
the restaurant and ordered wine”. Overall, the inferences deeper in the tree are much weaker
than the inferences at nodes where some of the λ-terms have already been resolved. This is
consistent with the scores observed in fig. 3.1, which are centered around 0 for existentially closed
denotations. The operator and also exhibits no particular inference with respect to any of the
propositions displayed. This is again because the existential closure of this denotation is a very
weak statement, indicating the existence of any conjunction in the meaning space.

Resolving λ-terms solidifies existing inferences and creates new ones. Composing enter with
the entity restaurant increases the certainty in proposition 2 and 4, whilst decreasing the certainty
of proposition 1. Despite not knowing yet who the agent of the enter predicate is, merely knowing
that someone entered a restaurant is enough to negatively infer that john entered a bar to a
certain extent, given the world knowledge constraint that individuals enter only one establishment
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at a time. Similarly for the predicate order, the certainty in proposition 3 and 5 increases by
knowing that someone ordered wine. The inferences here are weaker than the enter predicate,
because there are less restrictions on the order predicate (one may order both a food item and/or
a beverage, whereas one may only enter a restaurant or a bar). The positive inference with
respect to proposition 5 highlights the strong probabilistic constraint that ordering something
implies drinking/eating it.

The penultimate compositional step (before β-reducing John) displays that the relative
inference scores are already determined, but not quite as strong as they are in the sentence-final
meaning (some of the inferences are entailments, after all). This is because the meaning lacks
an agent for both predicates in the main conjunct. The existentially closed denotation of this
node is, in words, “Someone enters a restaurant and orders wine”. This obviously increases the
certainty in either Ellen performing these actions or John, or both. Similarly for proposition
1, someone entering a restaurant decreases the certainty in John entering a bar, but it could
still be the case that it is in fact Ellen who enters a restaurant while John enters a bar. Since
the agent is still unknown the mechanism cannot commit fully to either interpretation. When
John is β-reduced into the unfolding denotation, the entailments are resolved. Note that John
is an entity rather than a function in this space, and hence the inference scores over just John
are not defined. The β-reduced meaning results in a negative entailment for proposition 1 and
positive entailment for propositions 2 and 3. Propositions 4 and 5 display a weaker positive
inference, and proposition 6 has no significant inference with the sentence-final meaning (because
this proposition is essentially irrelevant to the meaning of this sentence).

Negation Negation as defined in chapter 2 carries some interesting logical consequences.
Propositional negation in vanilla DFS has two interesting properties. Firstly two meaning vectors
~v(a) ~v(¬a) are mutually orthogonal (perpendicular) meaning that the dot product ~v(a)·~v(¬a) = ~0.
Conversely, the addition ~v(a) +~v(¬a) = ~1.1 The property of orthogonality percolates to the level
of sets to some extent, because by definition the set a and ¬a are pairwise orthogonal. Meaning
that ~v(ai) · ~v(¬aj) = ~0 for all i = j in some set of vectors a. Similarly, these sets satisfy the
additive condition pairwise.

In order to satisfy these properties to the full extent, we must reduce both sets to the domain
of vectors using the centroid (eq. (2.22)). One can verify the property of orthogonality over the
centroids in this specific meaning space empirically. Table 3.3 represents the cosine similarity
of the centroid of each predicate with its negation. Note that a cosine similarity of 0 indicates
orthogonality and a cosine similarity of 1 indicates an angle of 0 between the vectors (i.e. they
point in the same direction). First and foremost, none of the vectors are orthogonal, with some
in fact being relatively similar. An interesting observation is that the cosine similarity seems to
be significantly higher for two place predicates than for one place predicates. And between two
place predicates, the more probable one (ordering usually implies eating or drinking in the this
world) has even higher cosine similarity.

The lack of orthogonality can be explained by looking more closely at the interaction between
negation and ∃-closure. Namely, the elements of a set representing a sub-propositional meaning
depends on the ∃-closure of the relevant λ-denotation. Strictly speaking, the external negation
of a formula containing existential quantifiers, such as “someone orders beer”, is “it is not the

1~1 meaning the tautological vector or the vector containing only 1.
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Figure 3.2: A visualization of the compositional process in λ-DFS of the sentence order(wine,john)
∧ enter(restaurant,john). Each non-entity node contains a graph representing the inference score
between the meaning up until that point (the centroid of that set) and a number of related
full propositions (such that each box is inf(meaning, proposition)). From 1− 6 the relevant 6
propositions are 1 : enter(bar, john), 2 : enter(restaurant, john), 3 : enter(restaurant, john) ∧
order(wine, john), 4 : enter(restaurant, john) ∧ order(beer, john), 5 : drink(wine,john) and 6 :
eat(fries, ellen).
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Predicate Cosine
λx.{~v | ~v |= pay(x)} 0.31
λx.{~v | ~v |= leave(x)} 0.32
λxλy.{~v | ~v |= eat(x,y)} 0.66
λxλy.{~v | ~v |= drink(x,y)} 0.67
λxλy.{~v | ~v |= enter(x,y)} 0.81
λxλy.{~v | ~v |= order(x,y)} 0.90

Table 3.3: Cosine similarity of each centroid predicate in the meaning space with their negation.
Calculated as cosine(centroid(a), centroid(not(a))).

Figure 3.3: The square of opposition

case that someone orders beer” or rather “nobody orders beer” as can be observed in the square
of opposition (eg. Parsons, 2017). The square of opposition is a visualization of the interaction
between negation and quantifiers, here given in fig. 3.3.

However, negating a predicate like “to order” ideally results in “to not order” rather than
the stronger “to never order”. Additionally, forcing the definition of negation to adhere to strict
external negation has some uncommon notational consequences, namely that negation would
scope over λ-terms. The interaction of quantifiers with the definition of negation in this thesis
results in the so-called subcontrary in the square of opposition (the subcontrary of “someone
orders beer” is “someone does not order beer”). It is then clear why the latter pair is not linear
algebraically orthogonal in λ-DFS, as both statements can be simultaneously true.

The second property, namely that summing a meaning vector and its negation results in the
tautological vector, percolates to the centroid of sets of meaning vectors. Table 3.4 shows the
probability of each centroid and its negation, which is equal to the average value of the centroid.
All of these values sum to one, satisfying a number of intuitions. First of all the conjunction
between a vector and its negation is the tautological vector, i.e. always true. Similarly the
probability of an event (in this case a proposition) or the negation of that event occurring is equal
to 1, meaning it is a perfect certainty. Lastly this table illustrates that the centroid represents
the fuzzy logic truth values to a certain degree, since the negation of the centroid is equal to
1− x where x is the fuzzy logic value.

The properties of λ-DFS negation illustrate a trade-off. If we were to define negation as
strictly external negation in the square of opposition (and thus let the negation operator take
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Predicate P (a) P (¬a)
λx.{~v | ~v |= pay(x)} 0.63 0.37
λx.{~v | ~v |= leave(x)} 0.41 0.59
λxλy.{~v | ~v |= eat(x,y)} 0.42 0.58
λxλy.{~v | ~v |= drink(x,y)} 0.43 0.57
λxλy.{~v | ~v |= enter(x,y)} 0.38 0.62
λxλy.{~v | ~v |= order(x,y)} 0.48 0.52

Table 3.4: All centroids of n-ary predicates in the world, their probability and the probability of
their negation.

scope over all quantifiers), the property of orthogonality would be preserved. However, then the
property of tautology would be lost as the negation of a vector would now be either impossible or
extremely unlikely. This implementation favors the latter property over the former, as otherwise
probability theory is no longer properly defined over all meaning vectors. Furthermore to avoid
scope-issues as much as possible, it is wise to keep the scope of operators as locally as possible.

Quantification Figure 3.4 displays an inference score syntactic tree where the effects of
quantification can be observed, namely that of the sentence ‘everyone ordered fries’. The β-
reduction incorporating fries into the ‘order’ predicate has the effect of increasing the certainty
in the fact that Ellen ate fries and decreasing certainty in the fact that John did not eat fries.
Furthermore the certainty of John and Ellen eating pizza is also decreased marginally. These
inferences are consistent with the world knowledge constraints and structure, and behave similarly
to those in fig. 3.2.

The crucial aspect of this tree lies in the inference of the denotation of ’everyone’. Most of
these inferences are direct reflections of the world knowledge constraints in the world, rather
than interactions between the meaning of ‘everyone’ and the individual propositions. Notably,
the inferences score of proposition 5 represents the unlikeliness of leaving somewhere without
paying. Of special interest is the inference score of proposition 6. Intuitively, one would say that
the meaning of ‘everyone’ would create a positive inference for both John and Ellen eating pizza.
However, we can observe a neutral inference in this case. The behaviors observed follow from
the definition of ‘everyone’ (eq. (2.19)). Firstly, the meaning of the set conjunction cannot be
computed without some sort of binding of the λ-terms. Otherwise each set would contain free
variables, which have no meaning. Hence the existential-closure operations must be performed
first. The only way to do this is to distribute the existential quantifier over the different conjuncts.
This results in ∃P.{~v | ~v |= P(john)} ∧× ∃P.{~v | ~v |= P(ellen)}. Crucially, because the scope of
the existential quantifier is no longer global, the λ-term (here P ) no longer necessarily must have
the same assignment over all conjuncts. The resulting meaning of ‘everyone’ is then, in natural
language, ‘everyone does something (but not necessarily the same thing)’. Which essentially is
the effect of the set quantification taking scope over the ∃-closure.

With this in mind, the inferences make sense. The meaning of the word ‘everyone’ is trivial, as
there are virtually no constraints on any model for it to entail the conditions of ‘everyone’. Hence,
the inferences represent world knowledge constraints that already exist a priori of the definition
of quantification employed in JeveryoneKS . Since there are no world knowledge constraints on
John and Ellen both eating pizza, the inference score is centered around 0.
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The last β-reduction that results in the sentence final meaning strengthening the inferences
from 1 − 4, whilst the inferences for propositions 5 − 6 are flipped to a certain extent. This
is because binding the λ-variable resolves the scope problem discussed above. This results in
the slightly negative inference for proposition 6, meaning that it is unlikely that both John and
Ellen eat a pizza given that they have both ordered fries (but not impossible). Secondly, the
negative inference for proposition 5 is now neutral. This is because the meaning of ‘everyone
ordered fries’ is not as trivial as the the bare meaning of JeveryoneKS . The neutral inference
score indicates that knowing that ‘everyone ordered fries’ has little bearing on whether john left
without paying. While it is unlikely that someone orders something and leaves without paying it
could be the case that Ellen paid for Johns order, after all they both ordered something. These
two hypotheses cancel each other out and result in an inference score centered around 0. The
remaining inferences in 1− 4 can already be observed in the preceding nodes. Just as in fig. 3.2,
these are solidified upon receiving information about the agent.

1 2 3 4 5 6

 x.order(fries,x)

1 2 3 4 5 6

x.order(fries,x)

1 2 3 4 5 6

y x.order(y,x)

1 2 3 4 5 6

P.  x.P(x)

Figure 3.4: A visualization of the compositional process in λ-DFS of the sentence ‘everyone
ordered fries’. Each non-entity node contains a graph representing the inference score between the
meaning up until that point (the centroid of that set) and a number of related full propositions
(such that each box is inf(meaning, proposition)). From 1− 6 the relevant 6 propositions are
1 : ¬eat(fries, john), 2 : eat(fries, ellen), 3 : enter(restaurant, john), 4 : enter(bar, john), 5 :
leave(john) ∧ ¬pay(john) and 6 : eat(pizza, ellen) ∧ eat(pizza, john).

3.3 Comparison to Neural Network outputs

The mechanism that I have introduced allows us to map to real space at any point in the
derivation. This is consistent with the proposal in Venhuizen et al. (2021) that subpropostional
meanings in DFS are real valued vectors, whilst full propositional meanings are binary vectors.
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It is also analogous to the RNN outputs, which outputs a real-valued estimate of the sentence
meaning up until the current timestep and approach a binary vector as the sentence inputted
to the network unfolds linearly. Figure 1.5 depicts these estimates in the form of a trajectory
through 3D space.

Because the mechanism in λ-DFS defines a mapping to real space from sets of meaning
vectors, we can plot a trajectory of the compositional process similar to fig. 1.5. Figure 3.5
depicts this trajectory for the sentence ‘John entered the restaurant and ordered wine’. A crucial
difference to the RNN outputs is that the compositional in λ-DFS process is not necessarily
linear. Hence the order of operations of this trajectory is depicted depth-first, but does not
represent the linear order in which an utterance would be produced or perceived.

The centroid of the denotation of the word ‘and’ lies somewhat in the center of the space.
This is consistent with the proposed definition of conjunction in section 2.3, which is essentially
any conjunction in the meaning space. Because this denotation is heavily underspecified, it is
impartial to any sentence-final meaning in the dimensionality reduced space. This results in a
vector roughly in the middle of the space. Incorporating the et predicate ‘order wine’ results
in the composed meaning vector moving towards the full meaning of ‘John ordered wine’ and
crucially away from ‘John ordered beer’ which is in line with the probabilistic constraint that
ordering beer and wine are relatively probabilistically exclusive (in general it is good advice not
to drink both wine and beer on the same night). Incorporating the second conjunct moves the
centroid of the sentence meaning so far in the direction of the sentence-final meaning of ‘John
entered the restaurant’. Incorporating the entity John moves the meaning average close towards
the sentence-final meaning of ‘John entered the restaurant and ordered wine’. The result of
the compositional process and the sentence-final meaning as computed by the vector algebra
proposed in Venhuizen et al. (2021) are not exactly equal, because of the additional entailment
relationships contained in the set representing ‘John entered the restaurant and ordered wine’.
For example, ‘John entered the restaurant and drank wine’ is also contained in this set.2 The
hard constraint that a person may not enter two places at the same time is also represented
by the fact that the final position of the compositional mechanism is furthest away from the
proposition ‘John entered the bar’.

The mechanism of λ-DFS thus not only defines a trajectory through real space, but the
intermediate steps are also sensible continuations of the preceding steps. Thus, although the
mechanism employed by the RNN is of a vastly different nature, the two solutions to building
sentence meanings incrementally share important properties.

2Although ordering does not imply drinking logically as per the hard constarints on the world (table 3.1), it
can still be the case that in this meaning space this entailment holds due to the stochastic nature of the sampling
algorithm.
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enter(bar(john)

enter(restaurant(john)
(enter(restaurant(john) & order(wine(john))

(enter(restaurant(john) & order(beer(john))

drink(wine(john)

order(wine(john)

order(beer(john)drink(beer(john)

leave(john)

pay(john)

ANDAND(ORDER(wine))

AND(ORDER(wine))(ENTER(restaurant))

AND(ORDER(wine))(ENTER(restaurant))(john)

Figure 3.5: Trajectory of the compositional process through the dimensionality-reduced meaning
space (using Multidimensional Scaling, described in more detail in Cox and Cox, 2008). The
blue nodes are the set-averages of the given logical form. The coloured lines indicate the distance
between respective points in the meaning space.



Chapter 4

Discussion

This section highlights some philosophical and semantic implications of λ-DFS and DFS as
a whole. Furthermore I discuss some potential avenues for expanding λ-DFS to increase its
coverage and theoretical rigor. First a reflection on sets as representational currency follows,
then the relationship between set cardinality and entropy is briefly explored. I then shortly
discuss the differences between compositional meaning construction and incremental meaning
construction. Lastly, I shortly reflect on the data-driven approach to semantics employed in DFS
and give a brief conclusion.

4.1 Are sets the right representational currency?

The decision to represent sub-propositional meanings as sets is an intuitive one, that is partially
based on the observation that, in fig. 1.5, the neural network outputs at any timestep seem to lie
in between their possible continuations. This implies that the meaning of a word or phrase is
determined by its distribution in the meaning space. This is attractive for multiple reasons. Since
DFS is a distributional framework, it only makes sense that sub-propositional meaning share
this property. Secondly, sets already enjoy an important status in model-theoretic semantics and
computation over them is relatively simple. The proposed mechanism uses the tools provided by
typed λ-calculus to define β-reduction over sets, which crucially must accept sets as input and
sets as output. The addition of types to the λ-expressions helps resolve quantification and allows
us to locate the entities in a given meaning space.

Although the make-up of λ-expressions and functions depends on its type, and the exact
contents of the sets that these expressions represent depend on their types (via existential closure),
the representational structure of these sets is the same across types. For example, both an et

and an eet predicate is a simplex set of meaning vectors even though their types dictate a strict
difference in their logical make-up. As shown in this thesis, strongly typed sets are not necessary
to achieve a decent coverage of natural language expressions given a meaning space. However, the
‘weakly’ typed implementation presented here has the effect that λ-expressions and sets operate
on different levels of representations which are mediated via entailment and existential closure.

This begs the question whether it is possible to construe a mechanism that intertwines
typed λ-calculus and set representation to a deeper extent. One possibility is to infer the set
representation of complex types based on an intuitive definition of the basic types e and t and
the most basic function et. Namely, type t expressions are meaning vectors, type e expressions
are members of DSe as per eq. (1.1), and type et expressions are sets of meaning vectors exactly

36
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has defined and used in this thesis. In more traditional type-theoretic notation, this comes down
to ordinary functions that have a different assignment over the different models of the meaning
space. Figure 4.1 explores this concept using a toy meaning space constructed for illustrative
purposes only. An example et denotation in more traditional type-theoretic notation is given
in eq. (4.1). Every element of this set is the assignment from entities to truth values of each
model Mi in the example meaning space. Notice how the truth values coloured in red correspond
exactly to the vector representing p1 in the meaning space, this notation is thus equivalent to a
set of all ‘sing’-predicates (except notationally ‘transposed’).


p1 p2 p3 p4 p5

M1 1 0 1 1 0
M2 1 0 1 0 1
M3 0 0 1 1 1
M4 0 1 0 1 0


DSe = {Chet = e1,Miles = e2,Ella = e3, trumpet = e4}
DSt = {~v | ~vi ∈ {0, 1}}
P = {sing(Chet), sing(Miles), sing(Ella), play(trumpet)(Chet), play(trumpet)(Miles)}

Figure 4.1: A toy meaning space with specification of the basic type domains.

JsingK =



e1 → 1
e2 → 0
e3 → 1

 ,

e1 → 1
e2 → 0
e3 → 1

 ,

e1 → 0
e2 → 0
e3 → 1

 ,

e1 → 0
e2 → 1
e3 → 0


 (4.1)

From these definitions we could infer the representation of more complex types and functions.
For example an eet predicate is a set of assignments from entities to entities to truth values
(eq. (4.2)).

JplayK =
{[
e4 →

[
e1 → 1
e2 → 0

]]
,

[
e4 →

[
e1 → 0
e2 → 1

]]
, · · ·

}
(4.2)

This definition is equivalent to a set of sets. More specifically, a set of sets of meaning vectors.
The ‘set of sets’-notation for this particular meaning space and this particular predicate is not so
interesting given the simplicity of the space. But one could imagine a space in which entities may
also play a saxophone in addition to a trumpet. Such a set would then be structured as follows.

{
{play(trumpet)(Chet),play(trumpet)(Miles), . . .}, {play(saxophone)(Chet), play(saxophone)(Miles), . . .}

}

The structure of other complex types can be inferred in a similar fashion. This has the
theoretical advantage of intertwining typed λ-calculus and set representations. Defining sub-
propositional expressions in this fashion has considerable consequences for the mechanism
proposed in the rest of this thesis and it is not exactly clear how some of the operations
defined, like existential closure, would percolate to this extension and whether the coverage of
natural language expressions would change significantly. However, this extension of λ-DFS seems
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promising at first sight. Given the scope of this thesis it is not formalized further, but left as a
potential avenue for research building on compositionality in DFS.

4.2 Entropy

One of the open issues of λ-DFS and its set-based implementation is relationship between entropy,
information gain and probability theory defined in vanilla DFS. Venhuizen et al. (2021) succinctly
describe the relationship between the neural network outputs in terms of entropy. Namely, the
cosine similarity between two meaning vectors is proportional to their conditional entropy. Here
conditional entropy means the logarithm of the probability of a word w given the utterance up
until that point (see eq. (1.9)), which mathematically indicates the uncertainty one has over the
possible continuation of an utterance. Since λ-DFS defines a trajectory through the meaning
space just like the RNN-solution does, the question arises whether there is a similar relationship
to conditional entropy between each β-reduction given the set denotations.

The RNN finds a statistical solution for mapping words to vectors based on a training set. The
correspondence between the outputs and the conditional entropy of utterances makes sense, since
RNN’s essentially estimate a probability distribution over the outputs to begin with. Additionally
one can easily estimate the probability of the raw training set if one has such data and compare
it to the outputs. The compositional mechanism I have tried to develop has no such luxury, since
there is no training data to help estimate conditional entropy. The only input to the system is
some sort of syntactic structure and a meaning space.

There is one observation in the behavior of DFS that seems to be related to the notion
of entropy. Namely, the development of set cardinality as an utterance reaches full reduction.
Given how sets are constructed in λ-DFS, based on entailment, it follows that denotations whose
existential closure are more trivially satisfiable in the world tend to have larger sets (there are
more propositions that entail this definition). As the variables in the denotation are assigned
to constants, the denotation becomes less general and more specific (consider ‘someone orders
something’ versus ‘someone orders beer’) and thus the cardinality of the resulting sets tend to
become smaller as the composition continues.

Exactly by how much the cardinality of the set decreases with each step depends on the
world knowledge constraints on the meaning space and the specific utterance being derived.
To illutrate, let us take an example meaning space in which it is very commonly defined that
someone drinks beer and very uncommonly defined that someone drinks water (say, your average
student fraternity). The eet predicate ‘drink’ may then look like as follows.

(8) drink = {drink(water,ellen), drink(beer,john),drink(beer,mike), drink(beer,emma)}

In this case, composing ‘drink’ with either ‘water’ or ‘beer’ incurs different cardinality changes
(namely 4→ 1 = 3 and 4→ 3 = 1) respectively. The lesser defined and therefore more unlikely
utterence-final meaning involving drinking water incurs a higher change in set cardinality than
drinking beer. This seems to be a good candidate for some sort of proportionality to information
gain (or surprisal) as improbable events incur a high surprisal. However, one issue with this
approach that it relies heavily on the exact formulation of the set of atomic propositions A. In a
similar meaning space, the unlikelihood of drinking water for John, Mike and Emma could just
as well be represented by meaning vectors which happen to have a very low probability. This
would crucially not be represented in the set ‘drink’.
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Since sets by default do not provide the necessary machinery to capitalize on the probability
of meaning vectors, we could try and back-off to the centroid of sets and see whether there
is a correspondence between the conditional entropy of two centroids (over which Venhuizen
et al. (2021) define surprisal, as they are just points in meaning space) and the change in set
cardinality as a result of composition. However, the relationship between a value in the centroid
and the number of elements in a set is not transparent. Consider for example the set a with two
propositions which assign 0 and 1 to M1 respectively and the set b with 100 propositions, the
first half assigning 0 to M1 and the second half assigning 1 to M1. The centroids of both of these
sets assign 0.5 to M1, even though treating a as some composition of b results in a cardinality
decrease of 98. This observation about centroids begs the question whether the relationship
between real-valued vectors, entropy and processing difficulty holds at all for λ-DFS, which
cannot base its outputs on a probability distribution over a training dataset (the equivalent of
‘linguistic experience’ in Venhuizen et al., 2021).

To investigate this issue further, I see a number of potential avenues. If one had some sort
of corpus of logical forms, whose frequency occurrence is consistent with the world knowledge
constraints of a given meaning space, then one could easily calculate the probability distribution
over each word given its components and empirically compare them to the cardinalities of the
sets produced by λ-DFS. Secondly, one could try to enrich the representation of sets with more
probabilistic information so the proportionality follows even in the case of a fully specified set
of atomic propositions (whose probabilities differ). Lastly, a potential addition to λ-DFS is to
employ a richer mapping to real-space (something more sophisticated than the centroid) so that
set cardinality is reflected in the real-valued equivalent. One thing we can conclude from this
brief and shallow exploration is that trivially true denotations (low surprisal words) tend to have
a high cardinality in their sets and that this is likely somehow related to the notion of surprisal.

4.3 Compositionality versus incrementality

It is now an appropriate time to ponder whether the proposed mechanism satisfied the definition
of compositionality given in ex. 2, repeated here as ex. 9 for clarity. In general, this thesis has
provided a function that defines a denotation for all well-formed instances of first-order formulas
and all partial functions of well-formed first order logical formulas (λ-calculus). Furthermore,
I have introduced a (somewhat non-trivial) function that produces an output given any pair
of well-formed arguments. To what extent these outputs are of desirable semantic nature is
a question that partially remains, although I have tried to make a reasonable case for this in
chapter 3. The interpretability of these outputs is mediated through a mapping from denotations
to sets, and a mapping from sets to real-valued vectors.

(9) There is a function fa() to the meaning of complex utterances from the individual meaning
of its constituents and the way in which those meanings are combined.

One of the prerequisites for the compositional mechanism was that it produces an output
pattern analogous to the RNN. Chapter 3 attempts to show this, but there are still relevant
differences between these trajectories. One of the key differences relates to the syntax of utterances
in λ-DFS and the RNN respectively. Throughout this thesis, the structure of sentences has been
represented using binary trees which is standard in many compositional frameworks. The neural
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network derives meaning from linearized structures, meaning that the utterance is presented
incrementally. This has the effect that the trajectory defined by λ-DFS and by the RNN do not
have the same ordering.

Incrementality has the added benefit of directly representing the way in which speakers
perceive language, whereas compositionality based on binary trees has the added prerequisite of
requiring speakers to induce a structure from a linearized utterance. However, it could still be
true that the RNN finds a solution in which non-linear dependencies must be formed in order
to produce the observed output. In fact, large scale neural language models are suspected to
able to infer parts of natural language hierarchies from linearized data (Manning et al., 2020).
This would imply that the RNN, perhaps also in the case of Venhuizen et al. (2021), could use
structure to infer sub-propositional and full propositional meanings in DFS.

If this is the case, then the RNN and λ-DFS are not mutually incompatible. While λ-DFS is
structure-dependent, it is also structure-agnostic. That is, as long as one provides a lexicon of
elementary denotations and some ordering in which to combine them, λ-DFS will produce an
output. What exactly this ordering is does not matter, it could be CFG-style binary trees or
based on some sort of dependency grammar. Figuring out in what way structure plays a role in
the RNN solution to DFS meanings and whether that is compatible with λ-DFS is related to the
larger research topic of explainability in neural networks (e.g. Roscher et al., 2020), which is
an interesting avenue of broader machine learning research from which DFS and computational
semantics as a whole can benefit.

4.4 Data-driven semantics and conclusion

One of the aspects of modern research in semantics research this thesis highlights is the symbiosis
between formal, symbolic methods and empirical data-driven methods. Language is not just a
phenomenon of reference, it also a phenomenon of distribution. Meaning that some elements
of linguistic meaning are shaped by usage and frequency, rather than logic. As illustrated in
chapter 1, both of these aspects are desirable for a maximally encompassing theory of meaning.

DFS representations lend themselves well to this style of theory due to their distributed
nature, while still being grounded in formal models. For example, probability theory is very
intuitively defined over these distributed logical representations. Probability theory is powerful
machinery in computational linguistics as a whole, and yet often not in the toolbox of traditional
semanticists. However, DFS representations are still only sampled top-down, meaning from a
world specification in terms of constraints, rather than bottom-up based on data. The latter
could be approached in two different ways. One could try to infer the constraints of some world
based on a data set, and sample normally with the inferred set of constraints. On the other hand
one could try and infer the observational models directly and construct a DFS-space based on
the inferred formal models. Doing so based on pure text is intuitively not an easy feat. This is
especially so because so many observations about the world are not directly expressed through
language, but rather implied through social and pragmatic rules. Consider for example natural
language utterance describing a driver running a red light versus a driver running a green light.
Despite the fact that the latter is much more frequent and in fact describes an important rule
of a standard traffic model, it is very unlikely to be expressed as frequently than the former (if
at all), because it is pragmatically or socially redundant to say so. Hence data for empirically
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sampling DFS-spaces must be semantically enriched or annotated.
The machinery of λ-DFS proposed in this thesis hopes to take a step further in this symbiosis.

It is essentially formal and symbolic machinery implemented over distributed empirical repres-
entations, and its effects can also be evaluated based on empirical probabilistic tools (such as
inference scores). With something like λ-DFS, one only needs a lexicon and a meaning space to
start deriving meanings of arbitrary complexity meaning units. This is in contrast to the neural
network, which ideally needs curated data in order to begin finding a solution and careful tuning
to make sure the found solution is somewhat appropriate and general. Moreover, systems like
λ-DFS offer complete control over the mechanism and outputs, which can be easily modified and
adjusted to ones needs. This allows DFS to become more practical for semanticists to use in
their research on a larger scale, whatever its particular goal. Reconciling the empirical aspect of
language with the formal and logical rigor of traditional semantics is an important step towards
pursuing the common goal of inquiring truth and meaning in natural language.
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